Search results for "Signal regeneration"
showing 7 items of 7 documents
Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s
2008
Topic: Nonlinear optics; International audience; In this work, we numerically investigate the performances of optical regenerators based on self-phase modulation and spectral offset filtering at 40 Gbit/s. We outline the different effects affecting the device performances and explain the choice of the optimal working power. The impact of the regenerator on the output signal is also analysed through a statistical approach. Both single- and double-stage configurations are investigated.
Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr
2019
We report a hollow-core negative-curvature fiber (HC-NCF) optical signal amplifier fabricated by the filling of the air microchannels of the fiber with all-inorganic CsPbBr3 perovskite nanocrystals (PNCs). The optimum fabrication conditions were found to enhance the optical gain, up to +3 dB in the best device. Experimental results were approximately reproduced by a gain assisted mechanism based on the nonlinear optical properties of the PNCs, indicating that signal regeneration can be achieved under low pump powers, much below the threshold of stimulated emission. The results can pave the road for new functionalities of the HC-NCF with PNCs, such as optical amplification, nonlinear frequen…
Cascadability and reshaping properties of a saturable absorber inserted inside a RZ transmission line for future 160-Gbit/s all-optical 2R-regenerato…
2007
International audience; In this prospective work, we analyze the behavior of a quantum-well microcavity saturable absorber component cascaded into a 100-km SMF RZ transmission line in order to annihilate the ghost-pulse phenomenon in the following simplified “...010101...” 160-Gbit/s 2-bit pattern at 1555 nm. Recirculating-loop experiments show a maximal ghost-pulse extinction up to 11.6 dB as well as an intensity extinction ratio enhancement higher than 6 dB over at least 800 km of propagation.
<title>Evolution of optical links toward full-optical transparency</title>
2003
In this paper we review issues of evolution of optical networks towards their full optical transparency and present sequence of eliminating non-transparent elements out of optical links (networks). Architectures of optical commutators with electrical and optical cores have been presented, as well as a structure of OMO (optical-millimeter wave-optical) switching fabric. An example of pure al-optical switch, made by Luxcore, utilizing dispersion compensating elements, wavelength converters and and variable optical attenuators (VOA) operating entirely in optical domain without optical-electrical-optical (OEO) conversions, was quoted. We brought up an issue of all-optical 3R signal regeneration…
Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals
2019
| openaire: EC/H2020/820423/EU//S2QUIP We report a hollow-core negative-curvature fiber (HC-NCF) optical signal amplifier fabricated by the filling of the air microchannels of the fiber with all-inorganic CsPbBr3 perovskite nanocrystals (PNCs). The optimum fabrication conditions were found to enhance the optical gain, up to +3 dB in the best device. Experimental results were approximately reproduced by a gain assisted mechanism based on the nonlinear optical properties of the PNCs, indicating that signal regeneration can be achieved under low pump powers, much below the threshold of stimulated emission. The results can pave the road of new functionalities of the HC-NCF with PNCs, such as op…
Advanced nonlinear signal processing in silicon-based waveguides
2015
This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.
Asymptotic properties of incoherent waves propagating in an all-optical regenerators line
2007
International audience; We present an original method to generate optical pulse trains with random time-interval values from incoherent broadband sources. More precisely, our technique relies on the remarkable properties of a line made of cascaded self-phase modulation-based optical regenerators. Depending on the regenerator parameters, various regimes with noticeably different physical behaviors can be reported.